Silvia Naira da Cruz Cesar Leal

Corrosão em Elos de Amarras Offshore: um estudo de caso

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE CIÊNCIAS DOS MATERIAIS E METALURGIA

Programa de Pós-Graduação em Engenharia Metalúrgica

Silvia Naira da Cruz Cesar Leal

Corrosão em Elos de Amarras Offshore: um estudo de caso

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Ciências da Engenharia Metalúrgica pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciências dos Materiais e Metalurgia da PUC-Rio.

Orientador: Marcos Venicius Soares Pereira Co- Orientador: Hélio Marques Kohler

> Rio de Janeiro Outubro de 2003

Silvia Naira da Cruz Cesar Leal

Corrosão em Elos de Amarras Offshore: um estudo de caso

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Ciências da Engenharia Metalúrgica pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciências dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marcos Venicius Soares Pereira

Orientador Departamento de Ciência dos Materiais e Metalurgia PUC-Rio.

Prof. Hélio Marques Kohler

Co-Orientador Departamento de Ciência dos Materiais e Metalurgia PUC-Rio.

> Dr. Eduardo Homem de Siqueira Cavalcanti Instituto Nacional de Tecnologia- INT

> > Dr. Valter Rocha dos Santos Promosub Ltda.

M.Sc. Luís Cláudio Sousa Costa CENPES/Petrobrás

Prof. Ney Augusto Dumont

Coordenador Setorial de Pós Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 17 de Outubro de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Silvia Naira da Cruz Cesar Leal

Aluna de Iniciação Científica do Departamento de Ciências dos Materiais e Metalurgia da PUC-Rio entre os anos de 1998 e 2000. Estagiária da REDUC/Petrobras no setor de corrosão no período de Julho de 2000 à Fevereiro de 2001. Graduou-se em Engenharia de Produção Metalúrgica na PUC-Rio em Julho de 2001.

Ficha catalográfica

Leal, Silvia Naira da Cruz César

Corrosão em elos de amarras offshore: um estudo de caso / Silvia Naira da Cruz Cesar Leal; orientador: Marcos Venicius Soares Pereira ; coorientador: Hélio Marques Kohler. - Rio de Janeiro : PUC-Rio, Departamento de Ciência dos Materiais e Metalurgia, 2003.

155 f.: il.; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Ciência dos Materiais e Metalurgia.

Inclui referências bibliográficas

1. Ciência dos materiais e metalurgia - Teses. 2. Soldagem por centelhamento. 3. Zona termicamente afetada. 4. Tratamentos térmicos. 5. Partículas de segunda fase. I. Pereira, Marcos Venicius Soares. II. Kohler, Hélio Marques III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. IV. Título.

CDD: 669

Agradecimentos

Ao professor Marcos Venicius Soares Pereira pela orientação e apoio durante a realização deste trabalho.

Ao professor Hélio Kohler pela atenção na parte experimental e matemática.

Aos técnicos dos Laboratórios da PUC-Rio, pelo auxílio para a realização dos ensaios deste trabalho.

A Brasilamarras e Petrobras pelo auxílio financeiro que possibilitou as etapas experimentais deste trabalho.

Ao Sr. Sergio Henrique Motta pelas informações referentes ao material utilizado neste trabalho.

Aos meus pais Jairo e Rosane e minha irmã Luciana pelo incentivo e apoio durante toda a minha vida.

Resumo

Leal, Silvia Naira da Cruz Cesar; Pereira, Marcos Venicius Soares (Orientador). **Corrosão em Elos de Amarras Offshore: um estudo de caso**. Rio de Janeiro, 2003. 133p. Dissertação de Mestrado — Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

O objetivo principal desta pesquisa foi caracterizar o fenômeno de corrosão localizada na região da junta soldada de elos de amarras do tipo ORQ utilizados em sistemas de ancoragem offshore. Para tal, foram selecionados elos de amarras retirados de serviço ao final de sua vida útil programada e sem sinais de corrosão localizada (elos sem corrosão) e elos de amarras que tiveram abreviada sua vida útil em função de corrosão localizada (elos com corrosão). Inicialmente, promoveu-se a determinação das características microestruturais, na qual se destacou o intenso bandeamento microestrutural de ferrita/perlita, bem como as propriedades mecânicas e de fratura das juntas soldadas em ambas as condições. Em seguida, ensaios eletroquímicos avaliaram a susceptibilidade à corrosão das diferentes regiões da junta soldada. Os resultados mostraram a zona termicamente afetada como anódica, com alta taxa de corrosão em elos com corrosão, enquanto que, em elos sem corrosão, esta mesma região foi catódica, com baixa velocidade de corrosão. Após tais ensaios, a zona termicamente afetada dos elos com corrosão foi submetida a diferentes tratamentos térmicos visando a diminuição de sua taxa de corrosão. O tratamento térmico de recozimento, prévio à têmpera e revenido, foi importante para a diminuição da taxa de corrosão desta região. Finalmente, as juntas soldadas em ambas as condições foram analisadas por difração de raios-X, que evidenciou a presença de partículas de segunda fase contendo níquel e cromo na zona termicamente afetada dos elos com corrosão. Tais partículas foram apontadas, possivelmente, como causadoras endurecimento e da maior susceptibilidade à corrosão desta região.

Palavras-chave

Soldagem por centelhamento; zona termicamente afetada; eletroquímica; tratamentos térmicos; partículas de segunda fase.

Abstract

Leal, Silvia Naira da Cruz Cesar; Pereira, Marcos Venicius Soares (Advisor). **Corrosion in Offshore Mooring Chains: a case study**. Rio de Janeiro, 2003. 133p. M.Sc. Dissertation – Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

The purpose of this work was to characterize the localizated corrosion phenomenom in the weld region of offshore mooring chains type ORQ. In this sense, a number of chain links were selected after finishing their projected life time without corrosion signs (chains without corrosion) as well as chain links which showed a reduced life time caused by localizated corrosion (chains with corrosion). Initially, a microetructural characterization, that revealed a strong ferrite-pearlite banding, as well as mechanical testing were carried out for both material's conditions. In the sequence, eletrochemistry tests evaluated the corrosion susceptibility of the different regions of the weld joint. The results showed that the heat affected zone concerning the chains with corrosion was the anodic region, with high corrosion rate, while the same region on the not corroded chains was the cathodic one, with low corrosion rate. After that, the heat affected zone regarding the corroded chains was subjected to different heat treatments aiming to reduce its corrosion rate. The annealing heat treatment, previous to quenching and tempering, was considered important in order to decrease the corrosion rate of this region. Finally, the welded joints in both conditions were analyzed by means of X-ray diffraction, which pointed to the presence of second phase particles containing nickel and chromium in the heat affected zone of the corroded chains. The hardening and the high corrosion susceptibility showed by this region was attributed for these particles.

Keywords

Flash welding; heat affected zone; eletrochemistry; heat treatments; second phase particles

Sumário

1. Introdução	17
2. Revisão Bibliográfica	20
2.1 Conceitos Básicos sobre Sistemas de Ancoragem	20
2.1.1 Introdução	20
2.1.2 Princípios de Atuação de um Sistema de Ancoragem	20
2.1.3 Amarras – Componente do Sistema de Ancoragem	21
2.2 Soldagem por Centelhamento	23
2.2.1 Introdução	23
2.2.2 Fundamentos Operacionais do Processo	23
2.3Definição de Corrosão	25
2.3.1 Introdução	25
2.3.2 Potencial de Eletrodo	26
2.3.2.1 Eletrodo de Referência	27
2.3.3 Heterogeneidades Responsáveis por Corrosão Eletroquímica	27
2.3.4 Variáveis do Processo de Corrosão	29
2.3.5 Taxa de Corrosão	29
2.3.6 Meios Corrosivos e Formas de Corrosão	30
2.3.7 Principais Tipos de Corrosão Eletroquímica	30
2.3.7.1 Corrosão Galvânica	30
2.3.7.2 Corrosão Intergranular	31
2.3.8 Polarização	32
2.3.9 Passivação	33
2.3.10 Influências na Taxa de Corrosão de Materiais Ferrosos	33
2.3.11 Efeitos do Meio Ambiente na Vida Útil dos Materiais	34
2.3.12 Controle da Corrosão	35
2.4 Microestruturas da ZTA	36
2.4.1 A Transformação de Austenita para Ferrita	36
2.4.2 A Zona Termicamente Afetada	38
2.4.2.1 Transformações Durante o Resfriamento	38

2.4.2.2 Principais Microconstituintes da ZTA	41
2.4.3 Metalurgia da Junta Soldada	45
2.4.4 Os Efeitos de Elementos de Liga nas Ligas Fe-C	45
2.4.4.1 O Campo de Fase Austenítico e Ferrítico	45
2.4.4.2 A Distribuição dos Elementos de Liga em Aços	47
2.5 Microestrutura de Bandeamento	48
2.5.1 Introdução	48
2.5.2 Bandeamento Ferrita/ Perlita dos Aços Hipoeutetóide	49
2.5.3 Possibilidade de Ação sobre o Bandeamento	51
2.5.4 Tratamento Térmico de Solubilização	51
Material e Procedimento Experimental	52
3.1 Composição Química e Geometria dos Elos de Amarras	52
3.2 Condição do Material Ensaiado	54
3.3 Posição de Retirada e Geometria dos Corpos de Prova	54
3.3.1 Corpos de Prova de Tração	54
3.3.2 Corpos de Prova de Impacto Charpy	56
3.3.3 Corpos de Prova de CTOD	56
3.3.4 Pré –Trincamento dos Corpos de Prova de CTOD	58
3.3.5 Corpos de Prova para o Ensaio de Corrosão	60
3.4 Ensaios de Tração	62
3.5 Ensaios de Impacto Charpy	62
3.6 Ensaios CTOD	63
3.7 Ensaios de Corrosão na Célula Eletroquímica	64
3.7.1 Parte I –Ensaio de Corrosão em Amostras como recebida	64
3.7.2 Parte II – Ensaio de Corrosão em Amostras da ZTA Tratadas	
Termicamente com o Metal de Base na Condição de Como Recebida	68
3.7.3 Parte III – Ensaio de Corrosão em Amostras do Metal de Base	
Tratadas Termicamente	69
3.8 Caracterização Microestrutural	69
3.8.1 Análises Metalográficas para a Condição de Como Recebida	69
3.8.2 Contagem da Porcentagem de Ferrita	70
3.8.2.1 Parte I – Varredura Milimétrica	70

3.8.2.2 Parte II – Varredura Micrometrica	71
3.8.3 Tamanho da Zona Termicamente Afetada	71
3.8.4 Otimização do Tratamento Térmico de Solubilização	72
3.8.5 Tratamentos Térmicos	73
3.9 Perfil de Microdureza e Dureza	74
3.10 Índices de Bandas	75
3.11 Difração de Raios-X	76
3.12 Análise de Precipitados no Microscópio Eletrônico de Transmissão	76
3.13 Caracterização Fractográfica no Microscópio Eletrônico de Varredura	76
4. Apresentação e Discussão dos Resultados Experimentais	77
4.1Composição Química	77
4.2 Ensaios de Tração	78
4.3 Ensaios de Impacto Charpy	80
4.4 Ensaios CTOD	82
4.5 Ensaios de Corrosão Eletroquímica	86
4.5.1 Amostras Como Recebidas	86
4.5.2 Amostras Tratadas Termicamente	92
4.6 Caracterização Microestrutural	98
4.6.1 Análises Metalográficas nas Condições de Como Recebidas	98
4.6.2 Contagem de Porcentagem de	104
4.6.2.1Varredura Milimétrica	104
4.6.2.2 Varredura Micrométrica	105
4.6.3 Tamanho da ZTA	108
4.6.4 Otimização do Tratamento Térmico de Recozimento	111
4.6.5 Efeito dos Tratamentos Térmicos	114
4.7 Perfil de Microdureza e Dureza	122
4.7.1 Perfil de Microdureza	122
4.7.2 Dureza	129
4.8 Índice de Bandas	130
4.9 Difração de Raios-x	131
4 10 Caracterização de Partículas no MET	135

4.11 Caracterização Fractográfica	139
5. Conclusões	148
6. Referências Bibliográficas	151

Lista de Figuras

Figura 1.1- Detalhamento da corrosão localizada.	18
Figura 1.2- Corrosão localizada na região da junta soldada.	18
Figura 1.3- Detalhamento da corrosão localizada.	19
Figura 2.1- Sistema de Ancoragem e prospecção.	21
Figura2.2–Elos do sistema de ancoragem offshore.	22
Figura 2.3- Tabela de Potenciais.	26
Figura 2.4 – Classificação das morfologias de ferrita	37
Figura 2.5 – Microestruturas mostrando as várias zonas da ZTA.	40
Figura 2.6- Microestrutura da ZTA contendo regiões de martensita.	41
Figura 2.7- Microestrutura da ZTA contendo ferrita com carbetos alinhados.	42
Figura 2.8- Microestrutura da ZTA contendo ferrita de Widmanstätten.	42
Figura 2.9 – Microestrutura da ZTA contendo ferrita com Agregado de carbetos.	43
Figura 2.10 – Microestrutura da ZTA contendo ferrita primária .	44
Figura 2.11 - Microestrutura da ZTA contendo ferita acicular.	44
Figura 2.12 –Elementos formadores de ferrita e austenita	46
Figura 2.13- Amostra com bandeamento ferrita/perlita.	50
Figura 3.1- Geometria típica de um elo sem malhete	53
Figura 3.2 – Geometria típica de um elo com malhete tipo ORQ	53
Figura 3.3 -Região de Solda e Metal de Base	54
Figura 3.4 -Posição de retirada dos corpos de prova de tração.	55
Figura 3.5- Geometria dos corpos de prova de tração.	55
Figura 3.6 – Geometria dos corpos de prova entalhados Charpy	56
Figura 3.7 - Orientação L-R da retirada dos corpos de prova CTOD.	57
Figura 3.8 – Posição de retirada dos corpos de prova nos elos.	57

Figura 3.9- Geometria dos corpos de prova CTOD.	58
Figura 3.10– Direção longitudinal de retirada dos corpos de prova.	61
Figura 3.11 - Geometria dos corpos de prova.	61
Figura 3.12 - Esquema do ensaio de impacto Charpy	63
Figura 3.13 - Montagem esquemática para Ensaio CTOD.	64
Figura 3.14– Esquema de montagem da célula eletroquímica	65
Figura 3.15 – <i>Pro</i> Vista frontal do potenciostato.	66
Figura 3.16– Tela inicial do software Labtech Notebook Pro	66
Figura 3.17 –Varreduras transversal e longitudinal	71
Figura 4.1 – Curva Experimental de potencial <i>versus</i> densidade de corrente para o metal de base dos elos sem corrosão.	86
Figura 4.2 – Curva Experimental de potencial <i>versus</i> densidade de corrente da região da ZTA para elos sem corrosão.	87
Figura 4.3 – Curva Experimental de potencial <i>versus</i> densidade de corrente da região da solda para elos sem corrosão.	88
Figura 4.4 – Curva Experimental de potencial <i>versus</i> densidade de corrente para o metal de base para elos com corrosão.	89
Figura 4.5 - Curva Experimental de potencial <i>versus</i> densidade de corrente da região da ZTA para elos com corrosão.	89
Figura 4.6– Curva Experimental de potencial <i>versus</i> densidade de corrente da região da solda para elos com corrosão.	90
Figura 4.7– Curva Experimental de Potencial <i>versus</i> densidade de corrente da região da ZTA.	93
Figura 4.8– Curva Experimental de Potencial <i>versus</i> densidade de corrente da região da ZTA.	93
Figura 4.9– Gráfico do Potencial <i>versus</i> densidade de corrente do metal de base.	94
Figura 4.10 – Curva Experimental de cpa <i>versus</i> Temperatura de Têmpera para cada condição em estudo.	96
Figura 4.11 – Região do metal de base em elo sem corrosão.	99
Figura 4.12 –Detalhamento da Figura 4.11.	99
Figura 4.13- Região do metal de base em elo com corrosão.	00

Figura 4.14- Detalhamento da Figura 4.13.	100
Figura 4.15 – Região da ZTA em elo sem corrosão. 85	101
Figura 4.16 – Região da ZTA em elo com corrosão.	101
Figura 4.17 – Região da solda em elo sem corrosão.	102
Figura 4.18 – Região da solda em elo com corrosão.	102
Figura 4.19 –Distribuição da fração de ferrita em função da distância da linha de solda em amostra sem corrosão.	106
Figura 4.20 –Média das distribuições apresentadas na Figura 4.19.	106
Figura 4.21– Distribuição da fração de ferrita em função da distância da linha de solda em amostra com corrosão.	107
Figura 4.22 – Média das distribuições apresentadas na Figura 4.21.	107
Figura 4.23 – Gráfico para determinação do tamanho da	
ZTA no elo sem corrosão.	109
Figura 4.24 – Gráfico para determinação do tamanho	
da ZTA no elo com corrosão.	109
Figura 4.25 – Amostra após recozimento à 900°C por 1 hora.	111
Figura 4.26 – Amostra após recozimento à 950°C por 1 hora.	112
Figura 4.27 – Amostra após recozimento à 1000°C por 1 hora e meia.	112
Figura 4.28 – Amostra após recozimento à 1000°C por 2 horas e meia.	113
Figura 4.29 –Microestrutura da ZTA recozida, austenitizada à 840°C por 1 hora e temperada.	114
Figura 4.30 – Microestrutura da ZTA recozida, austenitizada à 870°C por 1 hora e temperada.	115
Figura 4.31 – Microestrutura da ZTA recozida, austenitizada à 900°C por 1 hora e temperada.	115
Figura 4.32 –Microestrutura da ZTA austenitizada à 840°C por 1 hora e temperada.	116

Figura 4.33 – Microestrutura da ZTA austenitizada à 870°C por 1 hora e temperada.	117
Figura 4.34 – Microestrutura da ZTA austenitizada à 900°C por 1 hora e temperada.	117
Figura 4.35 –Microestrutura da ZTA recozida, austenitizada à 840°C por 1 hora, temperada e revenida à 650°C por 1 hora.	118
Figura 4.36 – Microestrutura da ZTA recozida, austenitizada à 870°C por 1 hora, temperada e revenida à 650°C por 1 hora.	119
Figura 4.37 – Microestrutura da ZTA recozida, austenitizada à 900°C por 1 hora, temperada e revenida à 650°C por 1 hora.	119
Figura 4.38–Microestrutura da ZTA austenitizada à 840°C por 1 hora, temperada e revenida à 650°C por 1 hora.	120
Figura 4.39 – Microestrutura da ZTA austenitizada à 870°C por 1 hora, temperada e revenida à 650°C por 1 hora.	121
Figura 4.40 – Microestrutura da ZTA austenitizada à 900°C por 1 hora, temperada e revenida à 650°C por 1 hora.	121
Figura 4.41- Perfil de Microdureza em função da distância à linha de solda na região central do elo sem corrosão.	123
Figura 4.42 - Perfil de Microdureza em função da distância à linha de solda de solda na borda do elo sem corrosão.	124
Figura 4.43- Perfil de Microdureza em função da distância à linha de solda na região central do elo com corrosão.	126
Figura 4.44- Perfil de Microdureza em função da distância à linha de solda na região da borda do elo com corrosão.	127
Figura 4.45 – Análise por difração de raios-X no material de base de elos sem corrosão.	131
Figura 4.46 – Análise por difração de raios-X na zona termicamente afetada de elos sem corrosão.	132
Figura 4.47 – Análise por difração de raios-X no material de base de elos com corrosão.	132
Figura 4.48 – Análise por difração de raios-X na zona termicamente afetada de elos com corrosão.	133
Figura 4.49 - Precipitados presentes na região da ZTA do elo com corrosão. Campo Claro.	135

na Figura 4.49. Picos de Ferro e Manganês.	136
Figura 4.51 -Precipitados presentes na região da ZTA do elo com corrosão. Campo Escuro.	136
Figura 4.52 - EDS referente ao precipitado encontrado na Figura 4.51. Picos de Ferro, Manganês e Silício.	137
Figura 4.53 – Região de Solda da amostra sem corrosão (1S).	139
Figura 4.54 - A- Detalhamento da Região.	140
Figura 4.55 – Região do metal de base da amostra sem corrosão (1B).	140
Figura 4.56 - A- Detalhamento da região.	141
Figura 4.57– Região do metal de base da amostra com corrosão (5B).	141
Figura 4.58- A- Detalhamento da região.	142
Figura 4.59 – Região do metal de base da amostra sem corrosão (2B).	142
Figura 4.60– A- Detalhamento da região.	143
Figura 4.61 – Região do metal de solda da amostra com corrosão (4S).	143
Figura 4.62 - Detalhamento da região.	144
Figura 4.63 – Região de solda da amostra sem corrosão (2S).	144
Figura 4.64 - A- Detalhamento da região.	145
Figura 4.65 – Região do metal de base da amostra com corrosão (4B).	145
Figura 4.66 - Detalhamento da região.	146
Figura 4.67- Região da solda da amostra com corrosão (6S).	146
Figura 4.68 - Detalhamento da região.	147

Lista de Tabelas

Tabela 3.1- Composição química média (%) do aço estrutural tipo ORQ com e sem corrosão.	52
Tabela 3.2 – Condições de Ensaio do aço tipo ORQ	38
Tabela 3.3 - Divisão das Amostras Como Recebidas para Ensaio de Corrosão.	65
Tabela 3.4 - Tratamentos Térmicos para amostras da Região da ZTA .	68
Tabela 4.1 - Propriedades Mecânicas dos elos Tipo ORQ.	79
Tabela 4.2 - Energia ao Impacto dos Elos ORQ na Temperatura de 0°C.	81
Tabela 4.3 – Energia ao Impacto dos Elos ORQ na Temperatura de –15°C.	81
Tabela 4.4 - Energias ao Impacto Requeridas para Elos ORQ].	82
Tabela 4.5 - Valores de CTOD na temperatura de –20 ° C para as	
Condições de Estudo e valores requeridos pela norma DNV	84
Tabela 4.6- Valores de Corrente e cpa's para as Regiões do Elo Com e Sem Corrosão para a Condição de Como Recebida	91
Tabela 4.7– Velocidades de Corrosão para ZTA Tratada Termicamente e Metal de Base com Corrosão Como Recebido.	95
Tabela 4.8- Velocidades de Corrosão para ZTA e Metal de Base Tratados Termicamente.	95
Tabela 4.9 -Valores de Potenciais para Densidade de Corrente zero na condição de como recebido	97
Tabela 4.10 -Valores de Potenciais para Densidade de Corrente zero da ZTA na condição de tratadas termicamente	98
Tabela 4.11 – Contagem de Ferrita Contida em Elo Sem Corrosão.	104
Tabela 4.12 – Contagem de Ferrita em Elo Com Corrosão.	104
Tabela 4.13– Valores de Dureza em função da Região do Elo	129
Tabela 4.14 –Valores obtidos para Grau de Bandeamento e Indice de Anisotropia (AI).	130